Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Cancer Gene Ther ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467764

ABSTRACT

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.

2.
NPJ Vaccines ; 8(1): 168, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914738

ABSTRACT

Previously, we reported that an ANGPTL3 vaccine is a hopeful therapeutic option against dyslipidemia. In our current study, we assess durability and booster effects of that vaccine over a period representing a mouse's lifespan. The vaccine remained effective for over one year, and booster vaccination maintained suppression of circulating triglyceride levels thereafter without major adverse effects on lungs, kidneys, or liver, suggesting vaccine efficacy and safety.

3.
Biochem Biophys Res Commun ; 686: 149166, 2023 12 17.
Article in English | MEDLINE | ID: mdl-37931363

ABSTRACT

Acetaminophen (APAP) overdoses can cause severe liver injury. In this study, the protective effect of fasudil against APAP-induced liver injury was investigated. APAP (400 mg/kg) was administered to male C57BL/6J mice to induce liver injury, and fasudil (20 or 40 mg/kg) was injected 30 min before APAP administration. Fasudil markedly suppressed APAP-induced elevation in serum transaminase activity and hepatic necrosis and significantly reduced an increase in nitrotyrosine and DNA fragmentation. However, fasudil did not affect cytochrome P450 2E1 expression, N-acetyl-p-benzoquinone imine production or c-jun N-terminal kinase activation. In contrast, fasudil significantly inhibited an APAP-induced increase in expression of the transcription factor C/EBP homologous protein (CHOP) in the liver, accompanied by transcriptional suppression of ER stress-related molecules such as Ero1α, Atf4 and Grp78. These findings indicate that suppression of CHOP expression by fasudil exhibits a remarkable protective effect against APAP liver injury by regulating ER stress. We suggest that fasudil is a promising therapeutic candidate for treating APAP-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Male , Animals , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Mice, Inbred C57BL , Liver/metabolism
4.
Commun Biol ; 6(1): 965, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37736764

ABSTRACT

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy advances rapidly in the clinic. Despite their therapeutic benefits, ICIs can cause clinically significant immune-related adverse events (irAEs), including myocarditis. However, the cellular and molecular mechanisms regulating irAE remain unclear. Here, we investigate the function of Angiopoietin-like protein 2 (ANGPTL2), a potential inflammatory mediator, in a mouse model of ICI-related autoimmune myocarditis. ANGPTL2 deficiency attenuates autoimmune inflammation in these mice, an outcome associated with decreased numbers of T cells and macrophages. We also show that cardiac fibroblasts express abundant ANGPTL2. Importantly, cardiac myofibroblast-derived ANGPTL2 enhances expression of chemoattractants via the NF-κB pathway, accelerating T cell recruitment into heart tissues. Our findings suggest an immunostimulatory function for ANGPTL2 in the context of ICI-related autoimmune inflammation and highlight the pathophysiological significance of ANGPTL2-mediated cardiac myofibroblast/immune cell crosstalk in enhancing autoimmune responses. These findings overall provide insight into mechanisms regulating irAEs.


Subject(s)
Angiopoietin-Like Protein 2 , Immune Checkpoint Inhibitors , Myocarditis , Animals , Mice , Heart , Immune Checkpoint Inhibitors/adverse effects , Inflammation , Myocarditis/chemically induced
5.
Int Immunol ; 35(11): 513-530, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37493250

ABSTRACT

Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.


Subject(s)
Immunity, Innate , Interleukin-7 , Mice , Animals , Endothelial Cells/metabolism , Papain , Lymphocytes , Lung , Adaptive Immunity , Inflammation , Cytokines/metabolism , Interleukin-33
6.
Mol Oncol ; 17(12): 2637-2658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37452654

ABSTRACT

Loss or downregulation of major histocompatibility complex class I (MHC-I) contributes to tumor immune evasion. We previously demonstrated that angiopoietin-like protein 2 (ANGPTL2) promotes tumor progression using a Xp11.2 translocation renal cell carcinoma (tRCC) mouse model. However, molecular mechanisms underlying ANGPTL2 tumor-promoting activity in the tRCC model remained unclear. Here, we report that ANGPTL2 deficiency in renal tubular epithelial cells slows tumor progression in the tRCC mouse model and promotes activated CD8+ T-cell infiltration of kidney tissues. We also found that Angptl2-deficient tumor cells show enhanced interferon γ-induced expression of MHC-I and increased susceptibility to CD8+ T-cell-mediated anti-tumor immune responses. Moreover, we provide evidence that the ANGPTL2-α5ß1 integrin pathway accelerates polycomb repressive complex 2-mediated repression of MHC-I expression in tumor cells. These findings suggest that ANGPTL2 signaling in tumor cells contributes to tumor immune evasion and that suppressing that signaling in tumor cells could serve as a potential strategy to facilitate tumor elimination by T-cell-mediated anti-tumor immunity.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Tumor Escape/genetics , Epigenetic Repression , Histocompatibility Antigens Class I/genetics , Carcinoma, Renal Cell/genetics , Disease Models, Animal
7.
Arterioscler Thromb Vasc Biol ; 43(8): 1549-1559, 2023 08.
Article in English | MEDLINE | ID: mdl-37259862

ABSTRACT

BACKGROUND: The ability to predict secondary cardiovascular events could improve health of patients undergoing statin treatment. Circulating ANGPTL8 (angiopoietin-like protein 8) levels, which positively correlate with proatherosclerotic lipid profiles, activate the pivotal proatherosclerotic factor ANGPTL3. Here, we assessed potential association between circulating ANGPTL8 levels and risk of secondary cardiovascular events in statin-treated patients. METHODS: We conducted a biomarker study with a case-cohort design, using samples from a 2018 randomized control trial known as randomized evaluation of high-dose (4 mg/day) or low-dose (1 mg/day) lipid-lowering therapy with pitavastatin in coronary artery disease (REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease])." From that study's full analysis set (n=12 413), we selected 2250 patients with stable coronary artery disease (582 with the primary outcome, 1745 randomly chosen, and 77 overlapping subjects). A composite end point including cardiovascular-related death, nonfatal myocardial infarction, nonfatal ischemic stroke, or unstable angina requiring emergent admission was set as a primary end point. Circulating ANGPTL8 levels were measured at baseline and 6 months after randomization. RESULTS: Over a 6-month period, ANGPTL8 level changes significantly decreased in the high-dose pitavastatin group, which showed 19% risk reduction of secondary cardiovascular events compared with the low-dose group in the REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease] study. In the highest quartiles, relative increases in ANGPTL8 levels were significantly associated with increased risk for secondary cardiovascular events, after adjustment for several cardiovascular disease risk factors and pitavastatin treatment (hazard ratio in Q4, 1.67 [95% CI, 1.17-2.39). Subgroup analyses showed relatively strong relationships between relative ANGPTL8 increases and secondary cardiovascular events in the high-dose pitavastatin group (hazard ratio in Q4, 2.07 [95% CI, 1.21-3.55]) and in the low ANGPTL8 group at baseline (166

Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Myocardial Infarction , Peptide Hormones , Humans , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Cardiovascular Diseases/blood , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Coronary Artery Disease/epidemiology , East Asian People , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipids , Myocardial Infarction/drug therapy , Treatment Outcome
8.
Commun Biol ; 6(1): 307, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949224

ABSTRACT

In mammalian mitochondria, translation of the AUA codon is supported by 5-formylcytidine (f5C) modification in the mitochondrial methionine tRNA anticodon. The 5-formylation is initiated by NSUN3 methylase. Human NSUN3 mutations are associated with mitochondrial diseases. Here we show that Nsun3 is essential for embryonic development in mice with whole-body Nsun3 knockout embryos dying between E10.5 and E12.5. To determine the functions of NSUN3 in adult tissue, we generated heart-specific Nsun3 knockout (Nsun3HKO) mice. Nsun3HKO heart mitochondria were enlarged and contained fragmented cristae. Nsun3HKO resulted in enhanced heart contraction and age-associated mild heart enlargement. In the Nsun3HKO hearts, mitochondrial mRNAs that encode respiratory complex subunits were not down regulated, but the enzymatic activities of the respiratory complexes decreased, especially in older mice. Our study emphasizes that mitochondrial tRNA anticodon modification is essential for mammalian embryonic development and shows that tissue-specific loss of a single mitochondrial tRNA modification can induce tissue aberration that worsens in later adulthood.


Subject(s)
Anticodon , RNA, Transfer, Met , Humans , Animals , Mice , Adult , RNA, Transfer, Met/genetics , Codon , Mitochondria/genetics , Mammals/genetics , Methyltransferases/genetics
9.
Nat Commun ; 13(1): 7439, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509749

ABSTRACT

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.


Subject(s)
Adipose Tissue, Brown , Sirtuins , Mice , Animals , Adipose Tissue, Brown/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Energy Metabolism/physiology , Mice, Knockout , RNA, Messenger/metabolism , Mammals/genetics , Sirtuins/genetics , Sirtuins/metabolism
10.
Sci Immunol ; 7(76): eabj8760, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36269840

ABSTRACT

Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.


Subject(s)
Natural Killer T-Cells , Mice , Humans , Animals , Natural Killer T-Cells/metabolism , Natural Killer T-Cells/pathology , Interleukin-15 , Antiviral Agents , Granzymes , Receptors, Natural Killer Cell , Receptors, Chemokine/metabolism , Lipids
11.
Oncogene ; 41(33): 4028-4041, 2022 08.
Article in English | MEDLINE | ID: mdl-35831580

ABSTRACT

Uncontrolled proliferation of intestinal epithelial cells caused by mutations in genes of the WNT/ß-catenin pathway is associated with development of intestinal cancers. We previously reported that intestinal stromal cell-derived angiopoietin-like protein 2 (ANGPTL2) controls epithelial regeneration and intestinal immune responses. However, the role of tumor cell-derived ANGPTL2 in intestinal tumorigenesis remained unclear. Here, we show that tumor cell-derived ANGPTL2 promotes ß-catenin-driven intestinal tumorigenesis. ANGPTL2 deficiency suppressed intestinal tumor development in an experimental mouse model of sporadic colon cancer. We also found that increased ANGPTL2 expression in colorectal cancer (CRC) cells augments ß-catenin pathway signaling and promotes tumor cell proliferation. Relevant to mechanism, our findings suggest that tumor cell-derived ANGPTL2 upregulates expression of OB-cadherin, which then interacts with ß-catenin, blocking destruction complex-independent proteasomal degradation of ß-catenin proteins. Moreover, our observations support a model whereby ANGPTL2-induced OB-cadherin expression in CRC cells is accompanied by decreased cell surface integrin α5ß1 expression. These findings overall provide novel insight into mechanisms of ß-catenin-driven intestinal tumorigenesis.


Subject(s)
Colorectal Neoplasms , Intestinal Neoplasms , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Intestinal Neoplasms/genetics , Mice , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
12.
Circ Rep ; 3(12): 707-715, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34950796

ABSTRACT

Background: Patients with cardiogenic shock due to acute myocardial infarction (AMI) can rapidly undergo veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy to recover cardiac output and decrease mortality. However, the clinical indicators predictive of mortality in these patients remain unknown. Methods and Results: We conducted a single-center retrospective cohort study targeting AMI patients undergoing VA-ECMO. All 63 patients undergoing VA-ECMO for AMI at the Japanese Red Cross Kumamoto Hospital between January 1, 2010 and June 30, 2020 were enrolled. An exploratory analysis was conducted using a survival tree model and variables selected in a univariate Cox proportional hazard model. The median survival time from the start of VA-ECMO was 6.3 days, and 77.8% (n=49) of patients died. Survival analysis divided patients into 3 groups based on 2 parameters at the initial medical examination: Group 1, patients with neither hyperglycemia (blood glucose ≥213 mg/dL) nor thrombocytopenia (platelets ≤145,100/µL); Group 2, patients with hyperglycemia; and Group 3, patients with hyperglycemia plus thrombocytopenia. Relative to Group 1, the risk of in-hospital mortality was significantly increased in Group 2 (hazard ratio [HR] 2.25; 95% confidence interval [CI] 1.13-4.46), and that risk further increased in Group 3 (HR 7.60; 95% CI 3.21-17.95). Conclusions: Hyperglycemia plus thrombocytopenia on initial medical examination combinatorially increase the risk of mortality in patients with cardiogenic shock due to AMI undergoing VA-ECMO.

13.
Cell Rep Med ; 2(11): 100446, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34841293

ABSTRACT

Dyslipidemia is a risk factor for cardiovascular disease (CVD), a major cause of death worldwide. Angiopoietin-like protein 3 (ANGPTL3), recognized as a new therapeutic target for dyslipidemia, regulates the metabolism of low-density lipoprotein-cholesterol (LDL-C) and triglycerides. Here, we design 3 epitopes (E1-E3) for use in development of a peptide vaccine targeting ANGPTL3 and estimate effects of each on obesity-associated dyslipidemia in B6.Cg-Lepob /J (ob/ob) mice. Vaccination with the E3 (32EPKSRFAMLD41) peptide significantly reduces circulating levels of triglycerides, LDL-C, and small dense (sd)-LDL-C in ob/ob mice and decreases obese-induced fatty liver. Moreover, E3 vaccination does not induce cytotoxicity in ob/ob mice. Interestingly, the effect of E3 vaccination on dyslipidemia attenuates development of atherosclerosis in B6.KOR/StmSlc-Apoeshl mice fed a high-cholesterol diet, which represent a model of severe familial hypercholesterolemia (FH) caused by ApoE loss of function. Taken together, ANGPTL3 vaccination could be an effective therapeutic strategy against dyslipidemia and associated diseases.


Subject(s)
Angiopoietin-Like Protein 3/metabolism , Dyslipidemias/immunology , Hyperlipoproteinemia Type II/immunology , Obesity/immunology , Vaccines/immunology , Angiopoietin-Like Protein 8/metabolism , Animals , Antigens/immunology , Atherosclerosis/complications , Autoimmunity , Cell Death , Disease Models, Animal , Dyslipidemias/blood , Dyslipidemias/complications , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/complications , Lipid Metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/complications , Triglycerides/blood , Vaccination
14.
Nat Commun ; 12(1): 2529, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953175

ABSTRACT

In the past decade, many long noncoding RNAs (lncRNAs) have been identified and their in vitro functions defined, although in some cases their functions in vivo remain less clear. Moreover, unlike nuclear lncRNAs, the roles of cytoplasmic lncRNAs are less defined. Here, using a gene trapping approach in mouse embryonic stem cells, we identify Caren (short for cardiomyocyte-enriched noncoding transcript), a cytoplasmic lncRNA abundantly expressed in cardiomyocytes. Caren maintains cardiac function under pathological stress by inactivating the ataxia telangiectasia mutated (ATM)-DNA damage response (DDR) pathway and activating mitochondrial bioenergetics. The presence of Caren transcripts does not alter expression of nearby (cis) genes but rather decreases translation of an mRNA transcribed from a distant gene encoding histidine triad nucleotide-binding protein 1 (Hint1), which activates the ATM-DDR pathway and reduces mitochondrial respiratory capacity in cardiomyocytes. Therefore, the cytoplasmic lncRNA Caren functions in cardioprotection by regulating translation of a distant gene and maintaining cardiomyocyte homeostasis.


Subject(s)
DNA Damage/physiology , Heart Failure/metabolism , Organelle Biogenesis , RNA, Long Noncoding/metabolism , Animals , Cell Nucleus , Energy Metabolism , Fibroblasts , Heart Failure/pathology , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Mouse Embryonic Stem Cells , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism
15.
Oncogene ; 40(1): 55-67, 2021 01.
Article in English | MEDLINE | ID: mdl-33051596

ABSTRACT

Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.


Subject(s)
Angiopoietin-like Proteins/genetics , Azoxymethane/adverse effects , Colitis/chemically induced , Dextran Sulfate/adverse effects , Intestinal Neoplasms/pathology , Angiopoietin-Like Protein 2 , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colitis/complications , Colitis/genetics , Disease Models, Animal , Gene Knockout Techniques , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/genetics , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction , Tumor Microenvironment
16.
Atherosclerosis ; 315: 18-23, 2020 12.
Article in English | MEDLINE | ID: mdl-33197687

ABSTRACT

BACKGROUND AND AIMS: Chronic low-grade inflammation is receiving much attention as a critical pathology that induces various aging phenotypes, a concept known as "inflammaging". Uremic patients undergoing hemodialysis therapy show vascular aging phenotypes characterized by greater arterial stiffness and calcification compared to healthy controls of the same generation. In the current study, we investigated whether levels of inflammaging markers in the circulation were associated with vascular aging phenotypes in hemodialysis patients, as estimated by the cardio-ankle vascular index (CAVI). METHODS: We conducted a multicenter cross-sectional study of 412 patients receiving hemodialysis and evaluated the relationship between circulating hs-CRP or ANGPTL2 levels, as markers of inflammaging, and CAVI. RESULTS: Of 412 patients, 376 were analyzed statistically. While circulating hs-CRP levels had no significant association with CAVI, generalized linear models revealed that high circulating ANGPTL2 levels were significantly associated with increasing CAVI after adjustment for classical metabolic factors and hemodialysis-related parameters [ß 0.63 (95%CI 0.07-1.18)]. Exploratory analysis revealed that high circulating ANGPTL2 levels were also strongly associated with increased CAVI, particularly in patients with conditions of increased vascular mechanical stress, such elevated blood pressure [ß 1.00 (95%CI 0.23-1.76)], elevated pulse pressure [ß 0.75 (95%CI 0.52-0.98)], or excess body fluid [ß 1.25 (95%CI 0.65-1.84)]. CONCLUSIONS: We conclude that circulating levels of ANGPTL2 rather than hs-CRP are positively associated with CAVI in the uremic population and that ANGPTL2 could be a unique marker of progression of vascular aging in patients receiving hemodialysis.


Subject(s)
Vascular Stiffness , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Blood Pressure , Cross-Sectional Studies , Humans , Renal Dialysis/adverse effects
17.
Biomedicines ; 8(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153000

ABSTRACT

Macrophages in the atheroma region produce matrix metalloproteinases (MMPs) and decrease plaque stability. Tissue oxygen tension decreases in the arterial wall of the atherosclerotic region. Hypoxia inducible factor (HIF)-1α plays a critical role in the transcriptional activation of hypoxia inducible genes. However, the precise roles of HIF-1α independent pathways in hypoxic responses are largely unknown. Xanthine oxidase (XO) is an enzyme that utilizes molecular oxygen and produces reactive oxygen species (ROS). Here, we show that ROS derived from XO increases MMP-3, -10, and -13 expression in murine macrophages. We found that the transcript levels of macrophage MMP-3, -10, and -13 were increased in hypoxic conditions. Hypoxia induced MMP expression in HIF-1α deficient macrophages. N-acetylcysteine (NAC) or febuxostat, an XO inhibitor, suppressed MMP expression in murine macrophages. Febuxostat decreased the incidence of plaque rupture in apolipoprotein-E-deficient mice. Our results indicate that febuxostat stabilized atherosclerotic plaque via suppressing the activities of macrophage MMP-9 and -13. Febuxostat administration is a potential therapeutic option in the management of atherosclerotic patients.

18.
Sci Rep ; 10(1): 4313, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152335

ABSTRACT

Melinjo seed extract (MSE) contains large amounts of polyphenols, including dimers of trans-resveratrol (e.g. gnetin C, L, gnemonoside A, B and D), and has been shown to potentially improve obesity. However, there is no clinical evidence regarding the anti-obesity effects of MSE, and its mechanisms are also unclear. We investigated the hypothesis that MSE supplementation increases the adiponectin (APN) multimerization via the up-regulation of disulfide bond A oxidoreductase-like protein (DsbA-L) under either or both physiological and obese conditions. To investigate the effect of MSE on the physiological condition, 42 healthy young volunteers were enrolled in a randomized, double-blind placebo-controlled clinical trial for 14 days. The participants were randomly assigned to the MSE 150 mg/day, MSE 300 mg/day or placebo groups. Furthermore, in order to investigate the effect of MSE on APN levels under obese conditions, we administered MSE powder (500 or 1000 mg/kg/day) to control-diet- or high-fat-diet (HFD)-fed C57BL/6 mice for 4 weeks. All participants completed the clinical trial. The administration of MSE 300 mg/day was associated with an increase in the ratio of HMW/total APN in relation to the genes regulating APN multimerization, including DsbA-L. Furthermore, this effect of MSE was more pronounced in carriers of the DsbA-L rs191776 G/T or T/T genotype than in others. In addition, the administration of MSE to HFD mice suppressed their metabolic abnormalities (i.e. weight gain, increased blood glucose level and fat mass accumulation) and increased the levels of total and HMW APN in serum and the mRNA levels of ADIPOQ and DsbA-L in adipose tissue. The present study suggests that MSE may exert beneficial effects via APN multimerization in relation to the induction of DsbA-L under both physiological and obese conditions.


Subject(s)
Adiponectin/chemistry , Gene Expression Regulation/drug effects , Gnetum/chemistry , Obesity/drug therapy , Plant Extracts/pharmacology , Protein Multimerization/drug effects , Adiponectin/metabolism , Adult , Animals , Diet, High-Fat/adverse effects , Double-Blind Method , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Obesity/etiology , Obesity/physiopathology , Prospective Studies , Seeds/chemistry , Up-Regulation , Young Adult
19.
Nephrol Dial Transplant ; 35(5): 854-860, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31840173

ABSTRACT

BACKGROUND: Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS: We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS: Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION: We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.


Subject(s)
Angiopoietin-like Proteins/blood , Biomarkers/blood , Kidney Diseases/mortality , Renal Dialysis/mortality , Aged , Angiopoietin-Like Protein 2 , C-Reactive Protein/analysis , Disease Progression , Female , Humans , Kidney Diseases/blood , Kidney Diseases/therapy , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , Survival Rate
20.
Genes Dev ; 33(23-24): 1641-1656, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31727773

ABSTRACT

Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies suggest that tumor cell-derived ANGPTL2 has tumor-promoting function. Here, we conducted mechanistic analysis comparing ANGPTL2 function in cancer progression in a murine syngeneic model of melanoma and a mouse model of translocation renal cell carcinoma (tRCC). ANGPTL2 deficiency in tumor cells slowed tRCC progression, supporting a tumor-promoting role. However, systemic ablation of ANGPTL2 accelerated tRCC progression, supporting a tumor-suppressing role. The syngeneic model also demonstrated a tumor-suppressing role of ANGPTL2 in host tumor microenvironmental cells. Furthermore, the syngeneic model showed that PDGFRα+ fibroblasts in the tumor microenvironment express abundant ANGPTL2 and contribute to tumor suppression. Moreover, host ANGPTL2 facilitates CD8+ T-cell cross-priming and enhances anti-tumor immune responses. Importantly, ANGPTL2 activates dendritic cells through PIR-B-NOTCH signaling and enhances tumor vaccine efficacy. Our study provides strong evidence that ANGPTL2 can function in either tumor promotion or suppression, depending on what cell type it is expressed in.


Subject(s)
Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/physiopathology , Disease Progression , Melanoma/physiopathology , Signal Transduction , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/deficiency , Angiopoietin-like Proteins/immunology , Animals , Cancer Vaccines/immunology , Carcinoma, Renal Cell/immunology , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Melanoma/immunology , Mice , Signal Transduction/genetics , Stromal Cells/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...